WebOct 1, 1990 · The Nagata-Higman theorem for the nilpotency of nil algebras of bounded … WebTheorem 1 (Higman [1]). SUBSEQ(L) is regular for any L ⊆Σ∗. Clearly, SUBSEQ(SUBSEQ(L)) = SUBSEQ(L) for any L, since is transitive. We’ll say that L is -closed if L = SUBSEQ(L). So Theorem 1 is equivalent to the statement that a language L is regular if L is -closed. The remainder of this note is to prove Theorem 1.
Graham Higman - Wikipedia
WebFor its proof, we show in Theorem 6.1 that the outer automorphism group of the Higman–Sims group HS has order 2. Theorem 6.1. Let G = hR, S, C, Gi ≤ GL22 (11) be constructed in Theorem 4.2. Then the following assertions hold : (a) Conjugation of G by the matrix Γ ∈ GL22 (11) of order 2 given below induces an outer automorphism of G of ... Webthe Higman–Haines sets in terms of nondeterministic finite automata. c 2007 Published by Elsevier B.V. Keywords: Finite automata; Higman’s theorem; Well-partial order; Descriptional complexity; Non-recursive trade-offs 1. Introduction A not so well-known theorem in formal language theory is that of Higman [6, Theorem 4.4], which reads as ... the painters seoul
Higman
WebApr 1, 1975 · It was first studied thoroughly in Theorem B of Hall and Higman (10). In this sequence of papers we look at the basic configurations arising out of Theorem B. In Hall-Higman Type Theorems. Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning a scholarship to Balliol College, Oxford. In 1939 he co-founded The Invariant Society, the student mathematics society, and earned his DPhil from the University of Oxford in 1941. His thesis, The units of group-rings, was written under the direction of J. H. C. Whitehead. From 1960 to 1984 he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. WebHALL-HIGMAN TYPE THEOREMS. IV T. R. BERGER1 Abstract. Hall and Higman's Theorem B is proved by con-structing the representation in the group algebra. This proof is independent of the field characteristic, except in one case. Let R be an extra special r group. Suppose C_Aut(/?) is cyclic, ir-reducible faithful on R¡Z(R), and trivial on Z(R). the painter the potter and the puppeteer